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In this supplemental document we provide the following: a proof of unbi-
asedness of the marginal MIS (MMIS) estimator (see Section 1), a version
of the MMIS estimator with arbitrary weighting functions (see Section 2),
a detailed look at how to implement a performant marginal path sampling
based multi-vertex path filtering (MVPF) in practice (see Section 3), and
additional rendering results for multi-vertex path filtering and multi-vertex
photon filtering (see Section 4).
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1 UNBIASEDNESS OF THE MARGINAL MIS ESTIMATOR
We show the unbiasedness of our MMIS estimator by writing out its
expected value over all random variables, i.e., the 𝑁 =

∑𝑇
𝑖=1 𝑛𝑖 inde-
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where 𝑖 is the index to each technique space, and 𝑗 is the index to
each sample per technique space:
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where for each 𝑥 in X, where 𝑓 (𝑥) > 0, at least one sampled tech-
nique such that 𝑝𝑖 (𝑥 |𝑡𝑖, 𝑗 ) > 0, and theweighting term 𝑝𝑖 (𝑥 |𝑡𝑖,𝑗 )∑𝑇

𝑖′=1
∑𝑛𝑖′

𝑗 ′=1 𝑝𝑖′ (𝑥 |𝑡𝑖′, 𝑗 ′ )
sums to 1 over the 𝑁 technique-sample pairs.

2 MARGINAL MIS AND APPROXIMATE WEIGHTS
AlthoughMMIS is derived as an approximation of the balance heuris-
tic for multi-sample MIS, its unbiasedness still holds for any arbi-
trary weighting function that similarly sum to 1 over the

∑𝑇
𝑖=1 𝑛𝑖

independently drawn technique-sample pairs:
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, (2)

where for each sample𝑥 ∈ X, when 𝑓 (𝑥) > 0,
∑𝑇
𝑖=1

∑𝑛𝑖
𝑗=1𝑤𝑖 (𝑡𝑖, 𝑗 , 𝑥)

sums to 1.
Replacing the weighting function𝑤𝑖 in Eq. (2) with the balance

heuristic,

𝑤𝑖 (𝑡, 𝑥) =
𝑝𝑖 (𝑥 |𝑡)∑𝑇

𝑖′=1
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, (3)

yields the estimator in the main paper.

3 MULTI-VERTEX PATH FILTERING IMPLEMENTATION
DETAILS

Directly implementing a marginal path sampling (MPS) estimator
for multi-vertex path filtering (MVPF) can result in a fairly ineffi-
cient implementation. In this section we will look at how to apply
MPS theory to the MVPF problem, and then show how we can
take advantage of the structure of the formulation to implement a
performant algorithm.
The goal of path filtering [Keller et al. 2014; West et al. 2020] is

to refine the outgoing radiance of a vertex by reusing the incoming
radiance of other nearby vertices (generally from different paths).
Multi-vertex path filtering extends this idea from one vertex along
a path, to multiple vertices (e.g. intermediate vertices—all but the
first and last vertex of a path).

Column 1 Column 2

Supplemental MVPF 1
(inline)

x1
κ2κ1 κ3

The filtering performed at each vertex is often implemented as a
range query or clustering operation. This effectively selects a finite
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set of prefixes and their next vertex who’s incoming radiance we
would like to reuse.

≈ ≈ ≈

Column 1 Column 2

MVPF
(inline)

x1

x2

κ2κ1 κ3

x3 x4

≈ ≈ ≈

As each prefix conditions the sampling of a next vertex, choosing
a prefix at every filtering kernel along a path conditions the sampling
of a complete path.

≈ ≈ ≈

Column 1 Column 2

MVPF
(inline)

x1

x2

sample vertices

auxiliary vertices

κ2κ1 κ3

x3 x4

The collection of prefixes forms a set of auxiliary vertices t, giving
us a conditional technique in marginal path sampling. This condi-
tional technique has a sampling PDF that is the product of sample
vertices x given the prefixes y that condition their sampling,

𝑝 (x|t) =
𝑘−1∏
𝑘 ′=2

𝑝 (x𝑘 ′ |y𝑘 ′ ) . (4)

where 𝑘 is the number of vertices in the path sample x. This condi-
tional technique belongs to a marginal technique over the space of
possible vertex values for the selected prefixes.

The set of conditional techniques we will use in MVPF is then all
of the ways we can sample a given path x — the choices of prefix
vertices that fall within the support of the filtering kernels along the
path x. If we apply filtering at the intermediate 𝑘 − 2 vertices, there
are 𝑇 =

∏𝑘−1
𝑘 ′=2 𝑁 (P, 𝜅𝑘 ′ ) conditional path sampling techniques,

where P is the set of traced paths and 𝑁 (P, 𝜅𝑘 ′ ) counts the number
of prefixes that fall within the support of the filtering kernel 𝜅𝑘 ′ .
This results in a number of conditional techniques exponential in 𝑘 .

Computing the denominator of themarginal path samplingweights
would generally require computing the PDF of x for each of the
exponential number of conditional techniques,

𝑇∑︁
𝑖′=1

𝑛𝑖′∑︁
𝑗 ′=1
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𝑝𝑖′ (x𝑖,𝑗 |t𝑖′, 𝑗 ′ )

. (5)

where, x𝑖, 𝑗,𝑘 ′ is the 𝑘′th vertex from the sensor on the 𝑗 th path
sample from the 𝑖th marginal technique, and y𝑖′, 𝑗 ′,𝑘 ′ is the prefix
used to compute the conditional PDF of the sample vertex x𝑖, 𝑗,𝑘 ′ .
The index 𝑖 iterates over the permutations of prefix choices at each
kernel, and there by intrinsically parameterizes a choice of prefix at
each kernel.

However, note that we are considering all of the ways to sample
a path x. Here this is all of the possible permutations of choosing
one prefix at each filtering kernel. As such, the conditional PDF
of each sample vertex x given their prefix y is reused across many
PDF terms 𝑝𝑖′ (x𝑖, 𝑗 |t𝑖′, 𝑗 ′ ) in the denominator of the marginal path
sampling estimator. With some reorganization of terms, changing

the sum-of-products to a product-of-sums,
𝑇∑︁
𝑖′=1

𝑛𝑖′∑︁
𝑗 ′=1

𝑝𝑖′ (x𝑖, 𝑗 |t𝑖′, 𝑗 ′ ) =
𝑘∏

𝑘 ′=1

𝑁 (P,𝜅𝑘′ )∑︁
𝑚=1

𝑝𝑚 (x𝑖, 𝑗,𝑘 ′ |y𝑚,𝑘 ′ )

filter localMIS

, (6)

we can reduce the exponential computational complexity to linear
in 𝑘 where y𝑚,𝑘 ′ is the𝑚th prefix that falls within the filter support
at the 𝑘′th vertex of the sample path. This reorganization of terms
is analogous to locally performing MIS over each filtering kernel
and taking their product.

Iterative multi-vertex path filtering algorithm. In practice we are
filtering not just a single path, but many paths (e.g. one path per
pixel). The local MIS weights of each sample vertex are used across
every constructed path that contains that sample vertex. This gives
us the opportunity to further amortize path weighting overhead by
computing each local MIS weight once, storing it, and iteratively
accumulating and propagating the local MIS weights. The result-
ing algorithm (see Algorithm 1) is analogous to the iterative path
filtering of Deng et al. [2021].

Algorithm 1:Multi-vertex Path Filtering
Input: Number of filtering iterations 𝐾

1 for 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑖𝑚𝑎𝑔𝑒 do
2 𝑝𝑎𝑡ℎ = tracePath(𝑝𝑖𝑥𝑒𝑙 )
3 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑡ℎ.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 )
4 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = cluster(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 )
5 for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
6 for 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑐 do
7 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑤𝑒𝑖𝑔ℎ𝑡 = computeLocalMIS(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐 )
8 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑖𝑛𝑐𝑅𝑎𝑑 = suffixOutRad(𝑣𝑒𝑟𝑡𝑒𝑥 .𝑠𝑢𝑓 𝑓 𝑖𝑥 )

9 for 𝑖 ∈ [1, 𝐾 ] do
10 for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
11 for 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑐 do
12 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑜𝑢𝑡𝑅𝑎𝑑 = weightAndSumIncRad(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐 )

13 for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
14 for 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑐 do
15 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑖𝑛𝑐𝑅𝑎𝑑 = 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑛𝑒𝑥𝑡𝑉𝑒𝑟𝑡𝑒𝑥 .𝑜𝑢𝑡𝑅𝑎𝑑

16 for 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑖𝑚𝑎𝑔𝑒 do
17 𝑝𝑖𝑥𝑒𝑙𝑉𝑒𝑟𝑡 = getFirstPathVertex(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑝𝑖𝑥𝑒𝑙 )
18 𝑝𝑖𝑥𝑒𝑙 .𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 (𝑝𝑖𝑥𝑒𝑙𝑉𝑒𝑟𝑡 .𝑖𝑛𝑐𝑅𝑎𝑑 )

By initially setting the incoming radiance of each vertex to the
unbiased outgoing radiance of their suffix, and filtering all clusters
some number of iterations 𝐾 , we will have effectively performed
multi-vertex path filtering at the first 𝐾 intermediate vertices of
every path.

Initial incoming radiance estimate. Some care needs to be taken
when choosing an initial incoming radiance value used for each ver-
tex. Some choices, such as setting the initial value to zero or direct
light, result in bias in the form of energy loss. We chose to initialize
the incoming radiance of each vertex to the unbiased outgoing radi-
ance of their suffix. This allows us to perform an arbitrary number
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of filtering iterations and still guarantee the estimator samples paths
of every length.

Next Event Estimation. In next event estimation (NEE) path trac-
ing the last vertex of a path can be sampled by either BSDF (i.e.
continuation) sampling or light sampling. This can greatly reduce
estimation variance compared to purely unidirectional path sam-
pling. We can incorporate NEE into the MVPF implementation dis-
cussed above by modifying the path sampling process and local MIS
weights. During path sampling we additionally sample and store a
light vertex for each vertex of a path, such that each path vertex now
has a reference to its continuation vertex and a light vertex. During
cluster-local filtering we then consider the incoming radiance from
both the continuation vertices and the associated light vertices. This
gives us an updated local MIS weight denominator for vertices that
lie on a light source,

𝑁 (P,𝜅𝑘′ )∑︁
𝑚=1

𝑝𝑚 (x𝑘 ′ |y𝑚,𝑘 ′ ) + 𝑁𝐿 (P, 𝜅𝑘 ′ )𝑝𝐿 (x𝑘 ′ ) , (7)

where x𝑘 ′ is the 𝑘′th vertex of a path sample, 𝑁𝐿 (P, 𝜅𝑘 ′ ) counts the
number of light vertices for the 𝑘′th filter kernel, and 𝑝𝐿 (x𝑘 ′ ) is the
unconditional light sampling PDF of the vertex x𝑘 ′ .

Greedy range query clustering. For the results in the main paper
and this supplemental we use a range query-based clustering (see
Algorithm 2) that has several nice properties. The resulting clusters
are guaranteed to have a radius no larger than the range query radius
parameter. This results in a controllable amount of bias proportional
to the radius. Further, the radius parameter can be progressively
reduced to decrease the bias of each successive MVPF rendering
pass. Further investigation may show that such progressive radius
reduction results in a consistent algorithm.

Algorithm 2: Range query-based clustering
Input: Set of vertices from all paths𝑉
Input: Range query radius parameter 𝑟

1 for 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑉 do
2 if 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 ≠ 𝑛𝑢𝑙𝑙 then
3 continue

4 𝑖𝑑 = nextClusterID( )
5 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 = 𝑖𝑑

6 𝑛𝑒𝑎𝑟𝑏𝑦 = rangeQuery(𝑉 , 𝑣𝑒𝑟𝑡𝑒𝑥, 𝑟 )
7 for 𝑛𝑒𝑎𝑟𝑉𝑒𝑟𝑡 ∈ 𝑛𝑒𝑎𝑟𝑏𝑦 do
8 if 𝑛𝑒𝑎𝑟𝑉𝑒𝑟𝑡 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 == 𝑛𝑢𝑙𝑙 then
9 𝑛𝑒𝑎𝑟𝑉𝑒𝑟𝑡 .𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 = 𝑖𝑑

4 ADDITIONAL RESULTS
In Fig. 1 we provide an equal-time comparison of multi-vertex path
filtering (MVPF) and multi-vertex photon filtering (MVPhF) against
four baseline methods: path tracing (PT), bidirectional path tracing
(BDPT), single vertex path filtering (PF), and photon mapping (PM),
on four additional scenes that cover various real-world lighting
scenarios. It is particularly worth noting that for some scenes photon

filtering (MVPhF) may not provide enough benefit over normal
photon mapping to overcome the additional bias incurred when
filtering.

ACKNOWLEDGMENTS
We express our gratitude to the following Blend Swap users:Nacimus
Ait Cherif for the bathroom scene in Fig. 1, Wig42 for the grey &
white room in Fig. 1, nulus for the ceiling lamp used in rows 2 and
3 of Fig. 1, and chams for the alarm clock in Fig. 1.

REFERENCES
Xi Deng, Miloš Hašan, Nathan Carr, Zexiang Xu, and Steve Marschner. 2021. Path

Graphs: Iterative Path Space Filtering. ACM Trans. Graph. 40, 6, Article 276 (dec
2021), 15 pages. https://doi.org/10.1145/3478513.3480547

Alexander Keller, Ken Dahm, and Nikolaus Binder. 2014. Path Space Filtering (SIG-
GRAPH ’14). ACM, 68:1–68:1. https://doi.org/10/gfz6mr

Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous
Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 39, 4 (July 2020). https://doi.org/10.1145/3386569.3392436

3

https://blendswap.com/blend/12584
https://blendswap.com/blend/12584
https://www.blendswap.com/blend/13552
https://www.blendswap.com/blend/19410
https://blendswap.com/blend/25320
https://doi.org/10.1145/3478513.3480547
https://doi.org/10/gfz6mr
https://doi.org/10.1145/3386569.3392436


SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Rex West, Iliyan Georgiev, and Toshiya Hachisuka

Column 1 Column 2

Supplemental Rsults (Bathroom)Draft 1
Equal time (300)

PT BDPT Reference

0.0

1.0

SM
A

PE

MVPFPF

0.01

0.1

1

10 100 1000

PT
BDPT
PF
PM
MVPF
MVPhF

SM
A

PE

Time (seconds)
10 1000100

MVPhFPM

300

Column 1 Column 2

Supplemental Rsults (Fireplace Day)Draft 1
Equal time (300)

0.0

1.0

SM
A

PE

0.01

0.1

1

10 100 1000

PT
BDPT
PF
PM
MVPF
MVPhF

SM
A

PE

Time (seconds)
10 1000100 300

Column 1 Column 2

Supplemental Rsults (Fireplace Night)Draft 1
Equal time (300)

0.0

1.0

SM
A

PE

0.01

0.1

1

10 100 1000

PT
BDPT
PF
PM
MVPF
MVPhF

SM
A

PE

Time (seconds)
10 1000100 300

Column 1 Column 2

Supplemental Rsults (UTClock)Draft 1
Equal time (300)

0.0

1.0

SM
A

PE

0.01

0.1

1

10 100 1000

PT
BDPT
PF
PM
MVPF
MVPhF

SM
A

PE

Time (seconds)
10 1000100 300

Fig. 1. An equal-time comparison of path tracing (PT), bidirectional path tracing (BDPT), single vertex path filtering (PF), photon mapping (PM), multi-vertex
path filtering (MVPF), and multi-vertex photon filtering (MVPhF) on four additional scenes that cover various real-world lighting scenarios.
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